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ABSTRACT  

Nowadays luminescent carbon-based nanoparticles can be synthesized by a wide range 

of physical and chemical methods from a large variety of carbon-based material sources. 

However, in most of the cases the product of synthesis is a complex mixture of compounds, 

which results in significant challenges in understanding the structure and optical properties of 

the reaction products. Consequently, a number of separation and purification methodologies 

have been developed to alleviate these challenges. In this review, we provide a detailed 

analysis of the current state of the art for methods of luminescent carbon nanoparticles separation 

and purification. We specifically target such methods as sucrose density gradient centrifugation, 

chromatography techniques, and electrophoresis because of their ability for fine separation of the 

reaction products with into a number of fractions. The aim of our comparative analysis is to 

help development of future strategies for reaction product separation and purification leading 

to a better understanding of carbon nanoparticles structure and luminescent mechanism as 

well as to underpin their applications.  
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1. Introduction 

 

Luminescent carbon nanoparticles (CNPs) are a new class of low-dimensional 

nanomaterials that became very popular over the last decade since they can potentially be 

used as a viable alternative to the traditional semiconductor quantum dots (QDs) and have 

already been proposed for a number of research and technological applications. Both CNPs 

and QDs have several significant advantages over traditional organic fluorophores such as 

stable luminescence [1,2], tunable excitation and emission spectra [3–5], large surface area 

[6,7], resistance to photo- and chemical degradation [8] and low toxicity [9].  

In this review as luminescent CNPs we understand carbon nanomaterials that have been 

reported in different manuscripts as carbon dots, carbon quantum dots, graphene-based 

nanoparticles, etc.  

The common of these structures are the presence of a large number of graphene like carbon-

carbon bonds with sp2 hybrid orbitals of carbon atoms and defects areas with sp3 carbon atoms 

hybridization. The well-known carbon nanostructures like carbon nanotubes, nanodiamonds 

or fullerenes have not been considered in this review because of the availability of a large 

number of articles concerned with their purification and separation techniques [10–12]. 

There is a large selection of starting materials and reported methods for the synthesis of 

CNPs. Starting materials vary from standard chemical reagents (citric acid [13], p-

phenylenediamine [14], and diaminonaphthalene [15], etc.) including polymers and 

biopolymers (carbohydrates [16]), to laboratory-produced chemicals (surfactant-modified 

silica spheres [17]) or even natural products (candle soot [18], lemon peels [19], etc.). 

Synthesis approaches include laser ablation, electrochemical, microwave (MW) or 

hydrothermal (HT) treatment [20–23]. So far, none of these methods allow obtaining 

nanoparticles with uniform size and properties and do not provide sufficient control over 

CNPs’ size and properties. Hence, for a detailed understanding of CNPs structure and 

properties as well as to enable their widespread application, it is necessary to develop 
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methods of separation of the reaction products with identical (or at least similar) 

characteristics.  

Centrifugation and filtration are widely used for removing of larger fragments such as 

soot from CNPs suspensions. Dialysis allows addressing the problem of CNPs solution 

purification from smaller structures including molecules and untreated compounds. However, 

these methods have not delivered isolation of the CNPs with uniform properties (or even 

uniform size) or CNP fractions with the target properties. Methods for fine separation of 

CNPs mixture into more defined fractions are less described, but some very useful examples 

of separation into components with different properties have already been developed 

(examples are presented in Table 1). 

Many of the approaches for separation and purification of nanoparticles described in this 

review are similar (or identical) to the methods of purification and fractionation developed 

over decades for other carbon nanostructures (generally carbon nanotubes (CNT) [10,24]). 

However, unlike in case of CNPs, the structure of such systems was generally known and 

separation methods were developed to obtain known fractions with similar properties for 

applications. In the case of CNPs in many cases there is a significant dispersion of the 

reaction products by size, defects structure, and luminescent properties. All of these features 

are not yet well-understood because of the difficulties of the separation of individual 

components from the complex mixture of the reaction products. Moreover, the exact atomic 

structure of CNPs is not yet known in many cases. 

Thus, in this review we summarize and provide critical analysis of application of well-

established separation methods (e.g. by size, mass, charge, density or, hydrophobic or 

hydrophilic nature) for CNPs for exploration of their properties, luminescent mechanism and 

potential applications. We have summarized CNPs isolation approaches together with the 

characteristics of separation processes and obtained compounds in Table 1. Principles and 

possibilities of CNPs separation techniques were summarized in Table 2.  

 

2. Dialysis  

 

Dialysis is a widely used technique for separation of colloidal solutions of proteins 

[25,26], polymers [27], and metal nanoparticles [28] from low-molecular weight substances 

using a semipermeable membrane. In the dialysis process, low-molecular compounds 

penetrate through the membrane pores (dialysate) while the high-molecular weight 

compounds are kept in the dialysis bag and called dialyzed solution. Usually, dialysis is used 
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against pure water or buffer (if it is necessary to keep pH value) for 12 - 48 hours [29–31]. 

While dialysis is a useful method for removal of low-molecular substances from CNPs 

solution, it still has a significant drawback since the dialyzed sample gets diluted. Practically, 

for CNP dialysis the membranes with a molecular weight cut-off (MWCO) from the smallest 

(100-500 Da) to 14 kDa or even more are used [31–33]. There are a large number of 

publications where dialysis is used as a main or one of separation method. In this part we 

summarize a few examples presented in order of increasing of dialysis bag pore size.  

Hu’s group [32] used dialysis membrane with small pores of 100-500 Da for purification 

HT obtained CNPs. As a result, CNPs with the average size of 5 nm with emission at 456 nm 

and quantum yield (QY) 38.7% were obtained. Other groups [29,34] used dialysis membranes 

with larger MWCO (1000 Da) for separation of hydrothermally treated solutions. The Wang 

et al. [34] obtained the CNPs with bright emissive at 420 nm from m-aminobenzoic acid with 

the QY = 30.7% and size around 3 nm. Kumar et al. [29] used dialysis process as a second 

separation step after filtration for nanoparticles based on Tulsi leaves with emission maxima 

in the area of 510-550 nm and 9.3% QY. The size of CNPs was also relatively small with an 

average diameter of 3 nm. The increasing of dialysis MWCO to 3500 Da leads to obtain a 

similar size nanoparticles around 3 nm from HT heated (2-pyridylazo)-2-naphthol and cobalt 

chloride. The emission maxima of CNPs are located in a green region (max 564 nm) with a 

QY of 6.2% [33]. Dialysis bag with larger MWCO of 8000-14000 Da was used by Mao’s 

group [31] for separation bare CNPs and PEG-passivated ones. The reported CNPs had sizes 

of around 1.5 nm and emission maxima at 520-560nm; the QY was measured with different 

excitation wavelengths, the highest value was around 0.87% for bare CNPs and 1,24% for 

PEG-modified nanoparticles.  

Correlation of proteins mass (in Da) with their minimum radius (in nm) allows to assume 

the correlation of CNPs size with dialysis bag pores [35]. Thus, the pores around 5 kDa can 

be passed through by nanoparticles with the sizes 1 nm or less. Hence, dialysis is usually used 

as one of separation methods mainly at start of treating the synthesized mixture in order to 

remove low molecular weight components. From the theoretical point of view, the main 

principle of dialysis separation is based mostly on particle size. Hence, if the particles size is 

larger than the pore size of a membrane, they cannot leave the dialysis bag and contribute to 

the substance characteristics after dialysis. Otherwise, if the substances size is smaller than 

the pore size, the substance proposes penetration through the dialysis membrane and leaving 

the bag. One of the main findings in this section is that there doesn’t seem to be a clear 

correlation between the dialysis membrane MWCO, reported particle sizes and their PL peak 
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emission wavelength. This suggests that dialysis is more efficient for removing an excess of 

reagents or reaction products of molecular sizes.  

 

 

3. Centrifugation  

 

Centrifugation is another widely used method for particles separation. The process is 

based on precipitation from a solution under the centrifugal force of particles with higher 

density, larger mass and size. In the case of CNPs, this method is used to separate larger 

pieces of soot obtained in the synthesis or to separate particles with a significant difference in 

mass/density. The centrifugal speeds in the range of 8,000-13,000 rpm are typically used for 

10-30 min [36–38]. Along with dialysis, centrifugation is usually the first step after synthesis 

for most of the reported protocols. One of the centrifugation advantages is the possibility of 

separation of CNPs both in water and in organic solvents. Another advantage of the method 

for CNPs separation is absence of sample dilution and even the possibility for increasing 

concentration. Besides, varying centrifuge speeds in a wide range can provide a route for 

sample separation into several fractions of different mass nanoparticles. As an example, Sahu 

and the colleagues [39] reported applying centrifugation for fine CNPs separation prepared 

from orange juice via the HT method into two fractions of distinct sizes. They used two 

different centrifugation speed modes: 3,000 and 10,000 rpm with interim acetone addition for 

successive separation of CNPs with the size of 20 nm and 1.5-4.5 nm, called CP and CD, 

respectively. It was found that these two fractions show different emission maxima (474 nm 

for CP and 455 for CD) and different QY (20% for CP and 26% for CD). 

A number of reports demonstrate application of centrifugation as a method for removing 

of waste products such as soot or amorphous carbon. Jia and coworkers [36] synthesized 

CNPs from ascorbic acid and Cu(Ac)2•H2O by HT process and used centrifugation at 8,000 

rpm for separating of soot pieces. The average size of this extracted CNPs with blue-green 

emission in the 450-550 nm region was found to be 3.2±0.72 nm and the QY was around 3%. 

In another work [40] the same centrifugation speed of 8,000 rpm for 30 min was used for 

purification of CNPs obtained electrochemically from graphite oxide and graphite particles. 

The size of the obtained CNPs was 2-8 nm. The higher centrifugation speed of 10,000 rpm for 

10 minutes made it possible to separate dopamine-based CNPs from larger particles [37]. 

After separation, the CNPs had an average size of 3.8 nm with emission maxima between 

380-530 nm and a QY of 6.4 %. Similar centrifugation parameters were used by Cai’s group 
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[41] for extracting nanoparticles with the size less than 5 nm from a solution obtained from 

citric acid (CA) and ethylenediamine (EDA) carbon mixture. The light emission from the 

CNPs were found in the blue spectral range with the maximum at 435 nm. In the recent work 

by Liu[38], roseheart radish based nanoparticles with the sizes of 1.2-6 nm, emission maxima 

at 420 nm and QY of 13.6% were obtained after high-speed centrifugation 13,000 rpm for 15 

min.  

In summary, centrifugation is a common method for separating a colloidal solution of 

carbon nanoparticles from large particles and soot pieces. No clear correlation between 

applied centrifugation condition, extracted particle sizes and light emission is observed. This 

may suggest that synthesis conditions may have significant effect of the size, structure and 

surface states resulting in wide variation of particle sizes. 

 

4. Filtration 

 

Filtration is a classical method for separation based on the substances size. A solution 

(or a suspension) containing different substances is passed through a material with fixed pore 

sizes (a filter or a membrane). CNPs with the sizes less than membrane pores can penetrate 

through the filter, while larger particles that cannot pass through the pores and are collected as 

a precipitate on the membrane surface. Limitation of this method is the absence of a 

possibility for obtaining fractions with a variety of sizes using single filtration.  

The filtered paper with the pore size of 0.1 μm was used for separation of CNPs from 

non-reacted carbon tubes and graphite pieces after an oxidation process [42]. Three types of 

CNPs from two types of carbon nanotubes (single- and multi-walls nanotubes) and graphite 

exhibited similar luminescent properties with a maximum at 535 nm after filtration and 

dialysis. The luminescence QY of CNPs was measured to be ~3–6%; the sizes were 3-5 nm 

for all CNPs types.  

 Membranes with the pore size 0.22 μm are widely used for filtration of CNP solutions. 

Human hair based CNPs synthesized at three synthesis temperatures (40, 100 and 140˚C) 

were filtered to remove large stands of hair fibers [2]. The nanoparticles of 8.5, 4.2 and 3.1 

nm sizes were obtained for different synthesis temperatures. The emission was found to be in 

the range of 320-450 nm for all CNPs while QYs were 11, 4 and 5.4%, respectively. The 

same membrane was used for the separation of three CNP types synthesized from various 

plant leaves[43]. Obtained CNPs had a size around 4 nm with an emission maximum at 430 

nm and QY in the range of 11.8 – 16.4%. CNPs of similar size (around 4.3 nm) were obtained 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

after filtration of HT-treated ginger juice[44]. The emission maximum was at 420 nm with 

QY 13.4%. Yang’s group[45] worked with a larger pore size of 1.0 μm for removing carbon 

substances after HT treatment of glucose and potassium dihydrophosphate. They synthesized 

two types of CNPs depending on starting materials ratio: C-blue (emission at 435 nm, QY 

2.4%) and C-green (emission at 510 nm, QY 1.8 %) with distinct sizes of 1.83 nm and 3.83 

nm respectively.  

One can conclude that simple filtration does provide efficient separation of smaller 

particles from the larger ones, but cannot be efficiently used for tunable particle selection 

form the reaction solution. From the collected data it is clear that the pore diameter (0.1 – 1 

µm) is much larger than the size of obtained CNPs. Therefore, it appears that the pore size 

does not influence the penetration of CNPs, and filtration is mostly a method for removing 

large size fractions. The advantages of the method are simplicity and rapidity. However, 

filtration is a less popular method for primary separation compared centrifugation because of 

a significant drawback – carbon species sticking to the filter material and blocking the pores, 

it can be necessary applying ultrasonication to prevent the filter blocking. 

 

5. Sucrose Density Gradient Centrifugation 

 

Sucrose density gradient centrifugation is a way for substances separation based on 

their different sedimentation in the high viscosity media. The sucrose gels with different 

densities (determined by the sucrose concentration) are prepared before the separation and 

deposited into a plastic tube as discrete layers, starting with gel with the highest sucrose 

concentration and so the highest density, thus providing density gradient. The sample is 

carefully placed on the surface of a gradient whose density increases from top to bottom. For 

the CNPs separation, 50-100% sucrose gel layers are typically used. Under a centrifugal 

force, sample penetrates into different sucrose layers. At the end, the substances form bands 

between the layers related to nanoparticles density.  

 Oza’s group [46] separated CNPs ultrasonic prepared from lemon fruit into two 

fractions with different optical properties in 50-100% sucrose gradient. The centrifugation at 

5,000 rpm for 1 hour was used. The CNPs fractions had significantly different sizes: the size 

of the first fraction was 20 nm and for the second it was 5 nm. The smaller size fraction (5 

nm) have traveled a longer route than the larger one and stopped between the layers with 

higher density. In this case, the smaller CNPs from the second fraction are supposed to have a 
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larger density comparative to the first fraction nanoparticles. The luminescent spectra have the 

maxima in the region of 310-340 nm for the first fraction while for the second fraction the 

emission range is significantly wider: around 325-550 nm. The QYs were 12.1% and 15%, 

respectively.  

The same sucrose gradient (50-100%) was used in the other two reports [47,48] where 

CNPs were prepared from Arabic gum by MW treatment. After separation, Thakur’s group 

[47] obtained three different color fractions designated i, ii and iii (Fig. 1). 

 

Fig. 1. Separation of CNPs using sucrose density gradient centrifugation at UV lamp 

(excitation 250 nm) (A, left); Upper and lower panels show the color of the fractions under 

normal light and UV light, respectively (A, right). Absorbance and luminescent spectra (inset) 

of CNPs fractions (B). SEM images (C,D) and HRTEM image (E) of fractions i, ii, and iii, 

respectively. Adapted with permission from Ref. [47]. Copyright (2014) Hindawi Publishing 

Corporation. 

The luminescent maximum for fraction designated as “i” was at 500 nm, for “ii” - around 472 

nm, while for “iii” it shifted down to 463 nm. Here was a similar correlation to Oza [46] 

results in the particle size and their way in the sucrose gradient. The smallest particles “iii” 

with the size around 7 nm have a longer route in the sucrose gradient and probably have the 

larger density comparative to fractions “ii” and “i”. The middle position and the size around 

10 nm was for the fraction “ii”; the biggest CNPs (“i”, 30 nm) collected in the top part of the 

sucrose gradient with minimal density. The QYs were calculated at three different excitation 
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wavelengths (350, 400 and 450 nm) and all results were less than 1 %. Pandey and co-

workers [48] also obtained three fractions of CNPs produced from gum Arabic extract using 

centrifugation with a 50-100% sucrose gradient at 2795 g for 40 min. Fraction 1 was dark 

brown under white light and blackish green under UV light (PL at 495 nm), the authors 

supposed presence of mixture graphene oxide and CNPs. In comparison to fraction 1, the 

absorption band of fraction 2 was at shorter wavelength area at 216 nm that can be 

characteristic of pure CNPs. The PL spectrum shows a maximum at 511 nm. The third 

fraction had a strong absorption at 215 nm and intense PL peak at 545 nm. The first fraction 

contains small graphene oxide sheets of 150 nm, the sizes of second and third fractions were 

around 5-15 nm.  

 The reported works show a clear correlation between the particle sizes and their 

position in a sucrose gradient. As can be seen, the smaller size nanoparticles collected in a 

layer with a larger density compare to the larger ones, which is indicated by their penetration 

to the sucrose layers with larger density. Hence, this method allows separating CNPs by size 

and particles density. Thus, being a more complex method, the density gradient centrifugation 

allows for a fine CNPs separation into fractions with different properties. The advantage of 

this method in that it offers a way for the separation of components with different density 

from each other. For preparative isolation of separated components, several ways can be used. 

One way is freezing and slicing of the sucrose layers. The other way is pricking the plastic 

tube to collect separated bands of substances. Sucrose density gradient centrifugation is a 

rarely used method due to difficulties in sucrose gradient preparation. It is also vital to avoid 

mixing of sucrose layers with similar densities. Finally, it is necessary to extract CNP by 

separation fractions from the sucrose molecules, which can be a challenge. 

 

6. Chromatography  

6.1.  Size-exclusion chromatography  

 

Size-exclusion chromatography is used for polymers [49], biopolymers [50], 

nanoparticles [51] separation by size due to the different ability of substances to penetrate into 

pores of the stationary phase. If a compound can enter the pores, it moves by a longer route 

than other substance with sizes larger than pores. Large substances that cannot enter the pores 

move through the column with the mobile phase. The smallest compounds will leave the 
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column the last. For separation commercial columns with size-exclusion chromatography 

resin as well as desalting columns are available. In standard protocol, the sample solution is 

placed on the top of the column and then water or buffer are added for elution of the sample 

fractions. The larger substances leave the column first due to exclusion from the pores of the 

stationary phase, while small size substances penetrate into the pores freely and leave column 

the last. Gravity type chromatography allows separating initial samples into a large number of 

fractions. The disadvantage of gravity size exclusion chromatography is dilution of substances 

with the water or buffer as well as long process duration. Faster separation time can be 

achieved by compressed gas (air, nitrogen or argon) used for pushing a mobile phase through 

the column. The centrifugal (spin) column chromatography provides faster separation, but 

there is the possibility to obtain only one fraction. This method avoids the large sample 

dilution and usually used for removing low molecular weight compounds (inorganic salts, for 

example).  

 A large number of scientific groups use Sephadex columns with a dextran gel of 

different pose size as a stationary phase. In particular, Sephadex G-100 (exclusion volume 4-

150 kDa) was used by scientific teams [52,53] for separating luminescent fractions from 

carbon mixture. Anilcumar and colleagues [52] separated the most luminescent fraction (with 

QY around 78 %) after laser ablation of carbon target. The emission maximum was in the 

area of 550 nm for the average particle size of about 5 nm. Wang’s group [53] separated 

candle soot-based CNPs into seven fractions. Finally, all samples have strong green emission 

in the area of 530 nm. The fractions QYs were significantly different, becoming progressively 

higher in last fractions (55-60%). The TEM data show slightly smaller particles (around 3 

nm) for the most intensive luminescent seventh fraction. Kokorina and co-workers [51] used 

smaller exclusion volume column (1-5 kDa) Sephadex G-25 medium for fractionation of 

CNPs synthesized from sodium dextran sulfate. The mixture was separated into 48 fractions. 

The authors found three types of luminophores: the first one with emission maxima at 420 nm 

appears in 8-15 fractions, the second with 480 nm (10-19 fractions) and the third with 530 nm 

(fractions 35-48) (Fig.2). The TEM images of the fractions with the brightest emission of each 

type showed small CNPs sizes – from 1 to 2.3 nm. The two larger CNPs types exhibited an 

excitation-dependent emission, typical for CNPs. The third type of CNPs showed no-

excitation-dependent emission and was the smallest in size - 1 nm. It was speculated that 

CNPs mixture contains molecular luminophore at latest fractions.  
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Fig. 2. Luminescent spectra of fractions with different retention volume: A- 11 ml (fraction 

15); B- 16 ml (fraction 23); C- 27 ml (fraction 39). High-resolution TEM images of CNPs for 

fractions 15 (D), 23 (E) and 38 (F). Adapted with permission from Ref. [51]. Copyright 

(2017) Elsevier Ltd. 

Using the Sephadex LH-20 (exclusion volume 4-5 kDa) with the pressure of 150 psi 

Arcudi’s group [54] improved separation efficiency. CNPs were prepared from arginine and 

ethylenediamine. After all separation steps, three fractions with different optical properties 

were obtained. The first fraction had an absorption maximum at 315 nm and emission at 380 

nm. The second fraction had two absorption maxima at 285 and 315 nm, the PL maximum at 

357 nm. The third had two short-wave absorption maxima at 253 and 278 nm and one more 

long-wave at 328 nm. The sizes of CNPs were around 2.6, 2 and 1.2 nm respectively. The 

emission maximum for the last fraction has a red-shift compared to the first and the second 

fractions. The larges value of QY was measured for the smallest size fraction (19%), while for 

the rest of fractions QY was around 10-11%. 

Wang et al. [55] worked with silica gel flash column chromatography using 

CH2Cl2/CH3OH (10:1, v/v) as effluents. Hydrothermally prepared CNPs from m-

aminophenol, passivated with hydrochloric and nitric acid were successfully separated into 

seven fractions. The emission maxima strongly red-shifted upon the increase in fraction 

number (450, 515, 520, 534, 550, 575, and 611 nm for fractions 1-7, respectively). The 

particles sizes after separation were in the range of 1.8-4.3 nm. The maximum QY was around 

28%. 
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In conclusion, the size-exclusion chromatography provides an effective tool for 

extracting fractions with different properties (optical and/or size) that is essential for 

consequent comparative analysis. Furthermore, obtained fractions dissolved in the same 

buffer as CNPs start solution and there is no need for additional purification. However, it is 

impossible to use organic solvents in working with Sephadex columns, this method is 

applicable only for hydrophilic CNPs.  

 

6.2. Anion-exchange high-performance liquid chromatography (AE-HPLC) 

 

Ion exchange chromatography allows separating substances on the basis of ionic 

interactions. The stationary phase with charged functional groups interacts with the ionized 

substances of the opposite charge. Anion-exchange chromatography is used for separation of 

a negatively charged of sample of interest in the positively charged stationary phase. Thus, the 

sample penetrates through the column and in the case of an anion-exchange type the positive 

molecules will elute out first, while negatively charged molecules can be eluted by the 

changing of buffer pH.  

The Vinci’s team [56] used the chromatographic column consisting of anion-exchange 

polymer-based nanoparticles with 2000 Å pore size for separation of oil lamp CNPs. The 

elution process was accomplished by a gradient of 240-600 mM of ammonium acetate 

solution. These CNPs were separated into 29 fractions with different colors; the light emission 

maxima in the region of 380-580 nm (Fig. 3). Absorbance showed a maximum at 230 nm and 

a shoulder in the area around 300 nm. The average CNPs’ size was 4-5 nm. The other work of 

this group [57] demonstrates CNPs prepared from oxidized graphene nanofibers. After 

separation of CNPs, 12 fractions were obtained with wide absorbance between 225-500 nm. 

The nanoparticles sizes had no correlation with fraction number: 10 nm for fraction 5, 7 nm 

for fraction 7, 14 nm for fraction 8 and 9.5 for fraction 12. There was also no correlation 

reported between QYs and the fraction number. The largest QYs were for the fractions 7 and 

8 (7 and 6%, respectively). Fractions 5 and 10 had QYs 3 and 2%, respectively. All things 

considered it was found that the smallest CNPs have the longest emission at 525 nm and the 

largest QY (7%).  
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Fig. 3. Emission spectra (λex = 325 nm) of the bulk CNPs (A) and five selected fractions (B). 

Photo of the fractionated species from the soot-derived sample under UV lamp (C-E). TEM 

images and electron diffraction patterns of particulates: fraction 3 (F), fraction 9 (G) and 

fraction 28 (H). Adapted with permission from Ref. [56]. Copyright (2012) American 

Chemical Society. 

 

Anion-exchange chromatography provides a possibility to separate samples by the 

charge interaction. The difference in values of the particles surface charges allows to separate 

particles with different negative charge: the larger a component total negative charge, the 

stronger its interaction with the stationary phase and the slower it migrates into the column. 

Thus, the method allows separation based chiefly on the surface properties of the 

nanoparticles. The results obtained so far suggest the correlation between the fraction number 

(and so the charge of the surface of CNP) and the emission wavelength. According to the 

theory, first fractions have a positive or low negative charge and they show emission in a blue 

area, after the increasing of the CNPs negative charge (in lager fractions) the emission shifts 

to a green area and the most negative CNPs from the late fractions have the longest emission 

wavelength. These correlations may indicate that the surface charge (and so the groups 

determining the surface charge) make a decisive contribution to the luminescence.  

.  

 

6.3. Reversed-phase liquid chromatography and HPLC 

 

Reversed-phase liquid chromatography is a type of liquid column chromatography 

with a nonpolar stationary phase and efficiency of substance separation can be controlled by 

the polarity of the mobile phase. As usual, С18-modified silica is used as a stationary phase. 

The hydrophobic substances are absorbed by stationary phase and hydrophilic substances 

move faster through the column and elute first. The technique requires applying a mixture of 
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water and organic solvents; popular solvents are methanol, tetrahydrofuran, acetonitrile, 

ethanol, etc. This represents a significant disadvantage due to possible influence an organic 

solvent on a sample structure.  

CNPs synthesized from urea and p-phenylenediamine with the 1:1 ratio by HT method 

were separated by reversed-phase liquid chromatography [58]. The polarity of the eluting 

solvents was gradually increased to obtain the fractions. Four typical fractions exhibiting blue, 

green, yellow, and red fluorescence were selected for further characterization Absorbance 

spectra had maxima at 383, 410, 488 and 528 nm for four fractions, respectively (Fig. 4). 

Authors explain the difference through the contribution of different surface states. The 

emission properties were also different for the fractions: the emission maxima at 440 nm for 

the first, 517 nm for the second, 566 nm for the third and 625 nm for the fourth. Obtained 

samples have a similar average size of around 2.6 nm and the QYs ranging from 8 to 35%.  

 

 

Fig. 4. Top images are photographs of samples A, B, C, and D in aqueous solution under 

daylight (left) and UV light (right). The bottom four graphs show their absorption curves 

(Abs) and their PL emission spectra (Em) under excitation with light of different wavelengths. 

Reprinted with permission from Ref. [58]. Copyright (2012) American Chemical Society. 

 

A significant disadvantage of this method is a long time (about 10 hours) required for 

complete fractionation of CNPs reaction solution. The high-performance liquid 

chromatography mode (HPLC) is used to reduce time of fractionation. Methanol or its 
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mixture was applied as a mobile phase for CNPs separation. Gong and his team [59] used a 

mixture of methanol and NH4Ac buffer as a mobile phase for separating CNPs prepared from 

glacial acetic acid and phosphorus oxide (V). They obtained 13 sample fractions with 

absorption in the range of 225-325 nm and emission in a blue-green region (450-490 nm). The 

sizes were analyzed for several fractions 1, 6, 8 and 12; they were 6.13 nm, 8.31 nm, 2.22 nm, 

and 8.66 nm, respectively. The QY data were different for these fractions with the lowest 

value obtained for fraction 1 (1.16%) and the maximum QY was for the fraction 4 (9%).  

Gong [60] also separated CNPs prepared from chitosan and glacial acetic using this 

type of chromatography. The mixture of methanol and water was used as the mobile phase. 

As a result, 12 fractions were obtained with an absorbance peak at 300 nm and emission 

maxima in blue area between 400 and 415 nm. The size of CNPs increased with the 

increasing of fraction number: fraction 1 - 1.6 nm, fraction 3 - 1.8 nm, fraction 6 - 2.5 nm, 

fraction 10 - 3.1 nm. 

Hu and colleagues [61] worked with RP-HPLC and used pure methanol as a mobile 

phase. CNPs were prepared from CA and EDA by MW synthesis and separated into 10 

fractions. The absorbance maxima were detected at 240 and 334–350 nm. The latter were 

interpreted as corresponding to the surface trap states. The emission bands are red-shifted 

from 424 to 436 nm and from 442 to 450 nm for several fractions. The sizes were 1.2–3.4 nm. 

The maximum QYs were recorded for fractions 3, 9 and 10 (10.03%, 14.98%, and 15.83%, 

respectively). For the rest of the fractions, the QY was found to be below 7.0 %. 

Reversed-phase liquid chromatography is a promising method due to the possibility of 

separating and exploring the samples mixture based on hydrophobicity, which is a surface 

property and allows to separate hydrophilic and hydrophobic substances. It follows from the 

examples that the hydrophilic CNPs (and so the smaller numbers of fractions) have a shorter 

emission than hydrophobic ones. 

 

6.4. Thin-layer chromatography (TLC) 

 

TLC is a version of chromatography for separation of samples in a thin layer of 

stationary phase (сellulose, silica gel or aluminum oxide). For the mobile phase, different 

polar or nonpolar solvents (such as ethanol, acetonitrile, dimethylformamide, water, acetone, 

benzene, etc.) and their mixtures can be used. A sample is placed onto the start line on the 

surface of the stationary phase and then proceed to move with the mobile phase. Capillary 

action leads to the components moving with different speed, causing sample separation into 
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different zones. TLC provides great opportunities for analysis and separation of substances 

because the method is simple and fast, while both the stationary and mobile phases can be 

varied. It should be noted that TLC allows washing of the separated zones for the analysis of 

separated fractions luminescent data and other necessary properties. 

Reversed-phase TLC was used by Zhou team [62] with a C18-silica stationary phase 

and a mixture of water and acetonitrile (7:3; v/w) as a mobile phase. The four luminescent 

fractions were obtained after 40 min separation of CA and EDA based CNPs (Fig. 5). The 

emission maxima were found to be in the range of 250-500 nm with the average CNP sizes of 

3-4 nm. The QYs were different for the fractions, the largest value was for the fraction 2 

(55%) and the smallest one was for the fraction 3 with 3%. 

 

Fig. 5. CNPs fractions (1, 2, 3 and 4) on a reversed-phased TLC plate (A); Luminescent 

spectra of the CNPs fractions 2 (B) and 3 (C). Adapted with permission from Ref [62]. 

Copyright (2012) ChemPub Society. 

 

A large variety of commercially available TLC plates and a wide range of mobile 

phases make this method promising for application in a nanoscale area. However, the 

necessity to elute separated CNPs fractions and technical difficulties of elution closely-spaced 

sample fractions can reduce the popularity of this method.  
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7.  Electrophoresis 

7.1.  Gel electrophoresis 

 

Electrophoresis is a technique for separation of charged substances in a conductive 

media in the electric field. Application of viscous media, such as gel slows migration speed 

and makes it dependent on the substances size and charge. Gel electrophoresis is thus a 

method of separation by charge-to-size ratio in the electric field in a viscous media, formed 

using different gel types and concentrations. In addition, this method allows discriminating by 

positive or negative charge of the separated substances. 

For separation of carbon-based nanostructures gel electrophoresis, first time was used 

by Xu’s team [63] in 2004 for purifying of single-walled carbon nanotubes. They worked 

with 1% agarose gel for isolation of nanotubes fractions and found a luminescent mixture of 

green-blue, yellow and orange substances; they called them fluorescent carbon. TEM images 

showed the average size of around 1 nm. So it is possible to suggest that it was gel 

electrophoresis, which introduced CNPs into scientific society.  

Agarose gel with a concentration of 0.2% was used for separation CA-EDA СNPs 

prepared at the different synthesis time [64]. After separation, the gel lane was divided into 

nine areas: four with a positive and four with a negative charge, and one corresponding to the 

loading wells. All bands showed absorption at 350 nm and emission at around 450 nm. The 

sizes were similar for all species (less than 2 nm). Species with maximum negative and 

positive charge had stronger PL compared to other bands. Authors concluded that in the 

reaction small polycyclic aromatic hydrocarbons and molecules of organic fluorophore can 

form that can be embedded into the hydrocarbons matrix. Kokorina and co-workers [65] used 

agarose gel with higher concentration of 2% for CA-EDA CNPs mixture separation. They 

obtained four luminescent bands consisting of both positively and negatively charged species, 

extracted separate luminescent bands from the gel for the detailed investigation (Fig. 6). It 

was found that all bands have emission that originates from the fluorophore with the 

maximum at 450 nm. The authors confirmed presence of negatively-charged blue-emissive 

molecular fluorophore with the largest charge-to-size ratio and that this fluorophore shows no 

excitation-dependent light emission properties. The other bands contain the molecular 

fluorophore and the carbon species. The QYs were different for all bands: the highest one was 

for the «pure» fluorophore with no excitation dependence of PL (80±4 %, band 4), the band 1 

has QY around 59±3 % and the lowest QYs were 33±5 % and 32±6 %, respectively for bands 
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2-3 (Fig. 6). Authors speculated the lower QYs values for “heavier” bands could be a result of 

internal filter effect due to carbon matrix presence. 

 

 

Fig. 6. Gel electrophoresis separation of CA and EDA CNPs at white light (A) and UV-light 

(B) photos. Luminescent spectra of extracted bands 1 (C), 2(D), 3(E) and 4(F). Reprinted with 

permission from Ref. [65]. Copyright 2019 Nature Publishing Group. 

 

Liu’s group [8] used another type of gel - the polyacrylamide gel - for analysis of 

candle soot CNPs with oxidation by nitric acid. All of the obtained bands had a negative 

charge. The authors classified the bands for three distinct species: nine fast-moving 

fluorescent bands, slow-moving, non-luminescent bands and agglomerates that did not 

penetrate the gel. The emission peaks for all fast-moving bands were at a region 415-615 nm. 

The sizes were around 1 nm and QYs were less than 1%.  

Gel electrophoresis is a technique for sample separation based on charge, size and 

mass properties. One of the advantage is a possibility to extract sample fractions from the 

matrix for subsequent analysis. The selection of gel electrophoresis experimental parameters 

such as buffer solution, pH, amperage, gel nature, and concentration allows effective sample 

separation. Furthermore, the possibility of a combination of gel electrophoresis and optical 

detections methods can provide detailed information about the nature and origin of light 

emission in CNPs. 

 

7.2.  Capillary electrophoresis 
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Capillary electrophoresis is a technique based on the separation of substances by 

charge-to-size principle in the capillaries with the submillimeter diameter under the constant 

electric field. Detection of separated molecules can be provided by absorption or fluorescent 

detectors avoided additional purification steps. 

Hu and his team [66] used capillary electrophoresis for separating neutral, positively 

and negatively charged species from the CA-EDA based CNPs. All fractions (ten) have 

absorption maxima at 250 and 350 nm. The emission maximum was in a green region at 550 

nm. Reportedly, positively charged and neutral CNPs showed strongest emission while 

negatively charged CNPs had lower PL quantum yield. 

Capillary electrophoresis can be a promising method for effective separation of 

complex CNPs mixtures due to several advantages like a possibility to separate ionic, neutral, 

hydrophilic, hydrophobic or chiral components, using a minimal volume of samples (a few 

microliters) and solvents and the absence of expensive columns with sorbents. 

Dielectrophoresis can be proposed as an extended version of capillary electrophoresis. This 

method allows separating substances mixture in a submillimeter capillary by alternating-

electric field affecting. This technique is used for CNTs’ separation by different length, 

diameter, a quantity of carbon layers and purification from metal particles due to their 

different ability of interaction with the electric field [67]. The main advantage of this method 

is the possibility to change the parameters of an electric field for separation of different types 

of CNPs and collecting them in different areas of microelectrode depending on their reaction 

on the alternating-electric field. 

 

8. Concluding remarks 

CNPs are a relatively new and rapidly developing class of luminescent carbon 

nanomaterials. Growing interest to CNPs can be correlated with a large variety of relatively 

cheap starting materials, a range of chemical and physical approaches, and prospective 

applications. For a long period, research related to CNPs was aimed at their synthesis and 

modification, however, a huge number of precursors and variety of synthetic conditions 

complicated the task of understanding the structure and luminescence mechanisms. Other 

difficulties were related to difficulties to control the size and structure of nanoparticles during 

the synthesis process. The obtained CNPs can be different in a substantially range of 

properties such as atomic composition and structure, density, mass, surface charge, and 
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hydrophobicity, light absorption and emission. Therefore, currently, one of the most 

challenging tasks is finding approaches for the separation of the CNPs mixture into individual 

components, or in as few fractions as possible, for subsequent analysis of their properties. 

Commonly used centrifugation, dialysis or filtration techniques are necessary for 

removing large soot pieces or low molecular weight substances. An addition of techniques for 

fine separation (sucrose density centrifugation, gel electrophoresis, chromatography) is based 

on various CNPs properties, such as density, properties (charge, hydrophobicity) will allow 

not only to isolate CNPs fraction with uniform properties but charge, mass, size, hydrophobic 

or hydrophilic nature (Table 2). A step-by-step thoughtful combination of separation methods 

based on the size/mass/density of CNPs with following separation based on the surface 

properties will allow to establish CNPs’ morphological characteristics, responsible for 

different emissive phenomena. Thus, separation approaches in combination with modern 

methods of the structure and luminescent properties characterization can help in formulating a 

unified theory for describing the CNPs structure and properties. 

 

9. Challenges 

Obviously, it has been made considerable progress in the luminescent CNPs’ separation 

techniques for resent years. Many research groups are disquieted by necessarily of finding and 

optimizing the separation methods to CNPs. There are some challenges to be solved such as 

reproducibility, scaling-up and a combination of several methods for separation of CNPs by 

different properties (for example, size and hydrophobicity or charge and density). It is 

important to note the necessity of enhancement of synthetic approaches and using high purity 

chemical reagents to avoid minor products. Exact separation of luminescent CNPs’ mixture 

by different properties fractions will lead to targeting application in medical, biological, 

analytical or technical areas. 

  

Table 1. Methods of CNPs separation  

CNPs start 

material  

Synthetic 

method/ 
conditions 

 

Separation 

conditions 

CNPs absorbance 

(ABS), excitation 
(EX) and emission 

(EM) maxima, nm 

Size, nm QY, % Refere

nce 

Dialysis 
Ethanol, H2O2  HT/ 180˚C, 12 

h 

MWCO =  
100-500 Da 

ABS: 222, 281, 
406; 
EX: 400; 

~ 5 38.7 [32] 
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EM: 456 

M-aminobenzoic 
acid 

HT/ 180˚C, 12 
h 

MWCO = 
1000 Da 

ABS: 300, 407; 
EX: 300; 
EM: 420 

~ 3 30.7 [34] 

Tulsi leaves HT/ 180˚C, 4 
h 

MWCO = 
1000 Da, 

12 h 

ABS: 280, 330; 
EX: 450-530; 
EM: 510-550 

~3 9.3 [29] 

1-(2-Pyridylazo)-2-
naphthol, cobalt 

chloride 

HT/ 180˚C, 4 
h 

MWCO = 
3500 Da, 
against 
ethanol 

ABS: 400-550; 
EX: 485; 
EM: 564 

~2.97 6.2 [33] 

Black lamp soot HT/ 140˚C, 12 
h 

MWCO = 
8000-14000 

Da 
 

EX: 420-500; 
EM: 520-560 

~1.5 max: 0.87 
± 0.04 

[31] 

Centrifugation 
Orange juice HT/ 120˚C, 

2.5 h 

Two types: 
(1) -3000 

rpm,  
(2) -10000 

rpm 

ABS: 288; 
(1) EM: 474; 

(2) EM: 455 

(1) > 20, 
(2) 1.5-
4.5  

(1) 20, 
(2) 26  

[39] 

Ascorbic acid and 
Cu(Ac)2*H2O 

HT/ 90˚C, 5 h 8000 rpm ABS: 287; 
EX: 365; 
EM: 450-550 

3.2±0.72 3.22 [36] 

Graphite rods Electrolysis/ 
15 min, 3 

times 

8000 rpm, 30 
min 

N/A 2.8 N/A [40] 

Dopamine HT/ 180˚C, 6 
h 

10000 rpm, 
10 min 

EM: 380-530 3.8  6.4 [37] 

CA, EDA HT/ 300˚C, 5h 10000 rpm, 
10 min 

ABS: 340; 
EX: 360; 
EM: 435 

< 5 nm N/A [41] 

Rose-heart radish HT/180˚C, 3h 13000 rpm, 
15 min 

ABS: 281.5; 
EX: 320; 
EM: 420 

1.2-6 13.6 [38] 

Filtration 
Carbon nanotubes 

(single-, multi-
walled) and 

graphite  

Sulfuric-nitric 
acid oxidation 

Pore size 0.1 
μm  

ABS: 200-600; 
EX: 460; 
EM: 535 

~ 3-5  3-6 [42] 

Human hair  (1) HT/ 40 ˚C, 
24 h 

(2) HT/ 100 

˚C, 24 h 
(3) HT/ 140 

˚C, 24 h 

Pore size 0.22 
μm 

Three CNPs types: 
(1) ABS: 323; EX: 
330; EM: 383; 
(2) ABS: 300; EX: 
353; EM: 450; 
(3) ABS: 295; EX: 
369; EM: 370 

(1) 8.5, 
(2) 4.2, 
(3) 3.1 
 
 

(1) 11.1, 
(2) 4.02,  
(3) 5.38 

[2] 

Plant leaves  Pyrolysis/ 
250, 300, 350, 

400˚C, 2 h 

Pore size 0.22 
μm 

Three CNPs types 
depend on start 
material: 
ABS: 300; 
EX: 370; 
(ori) EM: 429; 
(lot) EM: 424; 

~3.7 (ori) 16.4, 
(lot) 15.3, 
(pin) 
11.8  

[43] 
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(pin) EM: 427 
 

Ginger juice 
 

HT/ 300˚C, 2 
h 

Pore size 0.22 
μm 

ABS: 270, 325; 
EX: 325; 
EM: 420 

4.3 ± 0.8 13.4 [44] 

Glucose/KH2PO4 

(1) – 1/36 
(2) – 1/26 

HT/ 200˚C, 12 
h 
 

Pore size 1.0 
μm 

(1-2) ABS: 250-
600; 
(1) EX: 350; EM: 
435; 
(2) EX: 440; EM: 
510 

(1) 
~1.83, 
(2) 
~3.83 
 

(1) 2.4, 
(2) 1.8 

[45] 

Sucrose density gradient centrifugation 
Citrus lemon Ultrasonicatio

n/ 20 kHz, 1 h 
(1) 5000 rpm, 

1 h; 
(2) 12000, 15 

min  
50–100% 
gradient 

concentration 
of sucrose 

 

 (1) ABS: 250, 350; 
EM: 310-340; 
(2) ABS: 244, 293; 
EM: 325-550 

(1) 20, 
(2) 5  

(1) 12.1, 
(2) 15  

[46] 

Gum Arabic  MW 
pyrolysis, 5 

min 

50–100% 
gradient 

concentration 
of sucrose 

(1) ABS:243, 267; 
EM: 500; 
(2) ABS: 235, 265; 
EM: 472; 
(3) ABS: 232, 263; 
EM: 463 

(1) 30, 
(2) 10, 
(3) 7  
 

(1) 90, 
(2) 80, 
(3) 60 
 

[47] 

Gum Arabic MW 
pyrolysis, 5 

min 

50–100% 
gradient 

concentration 
of sucrose,  
2795 g, 40 

min 

Free fractions: 
(1) ABS: 424 and 
background 600; 
EM: 495 
(2) ABS: 216; EM: 
511; 
(3) ABS: 215; EM: 
545  

(2) 5-15, 
(3) 5-10 

N/A [48] 

Exclusion column chromatography 

Carbon target, 
passivation with 

PEG1500N, ZnS and 
ZnO 

Laser ablation Sephadex G-
100 

ABS: 440; 
EM: 520 

~ 5 78 [52] 

Carbon soot, 
PEG1500N 

passivation 

HT/ 12 
h 

Sephadex G-
100 

EM: shoulder in a 
blue region and 530 
 

 3 55-60 [53] 

Sodium dextran 
sulfate 

HT/ 220˚C, 3 
h 

Sephadex G-
25 medium 

48 fractions with 3 
CNPs types: 
(1) EM: 420; 
(2) EM: 480; 
(3) EM: 530 
 

~1-2.3 --- [51] 

Arginine, EDA MW 
pyrolysis/ 

240˚C, 200W, 
26 bar, 3 h  

Sephadex LH-
20 at pressure 

150 psi 

Three fractions: 
(1) ABS: 315; EM: 
380; 
(2) ABS: 285, 315; 
EM: 357; 

(1) 
2.65±0.4
8, 
(2) 
2.04±0.5

(1) 19, 
(2) 10, 
(3) 11 
 

[54] 
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(3) ABS: 253, 278, 
328; EM: 421 
 

7, 
(3) 
1.24±0.4
3 

m-Aminophenol in 
EtOH, hydrochloric 
acid and nitric acid 

HT/ 180˚C, 
12h 

Flash with 
using 

CH2Cl2/CH3O
H (10:1, v/v) 

as eluents, 
silica as a 
stationary 

phase 

Seven fractions: 
(1) EM: 450; 
(2) EM: 515; 
(3) EM: 520; 
(4) EM: 534; 
(5) EM: 550; 
(6) EM: 575; 
(7) EM: 611 
 
 

1.8-4.3 (2) 27.7, 
(3) 28.6 

[55] 

Anion-exchange high-performance liquid chromatography 
Oil lamp soot Oxidation Dionex 

IonPac 
AS12A 
column 

29 fractions: 
ABS: 230, features 
at ~300; 
EM: 380-580 
 

~ 4-5 N/A [56] 

Graphite nanofibers Oxidation N/A 12 fractions, 
analyzed 5, 7, 8, 10 
ABS: 225-500; 
(5) EM: 450; 
(7) EM: 525; 
(8) EM: 500 

(5) 10.1 
± 0.8, 
(7) 7.1 ± 
0.6, 
(8) 14 ± 
1, 
(10) 9.4 
± 0.5  

(5) 2, 
(7) 6, 
(8) 7, 
(10) 3 

[57] 

Reversed-phase liquid chromatography 
Urea and p-

phenylenediamine 
1:1 

HT/ 160˚C, 10 
h 

Stationary 
phase: silica; 
mobile phase: 
ethyl acetate 
and 
ethanol  

Four fractions: 
(1) ABS: 200-350, 
383; 
(2) ABS: 200-350, 
410; 
(3) ABS: 200-350, 
488; 
(4) ABS: 200-350, 
528; 
(1-4) EM: 440-652 

2.6 8-35 [58] 

Reversed-phase high-performance liquid chromatography (C18) 
Glacial acetic acid, 

water and P2O5  
Baking mobile phase: 

MeOH and 
NH4Ac buffer 

(pH 5.5) 

13 fractions: 
(1-13) ABS: 225-
325; 
(1-13) EM: 449-490  

(1) 6.13, 
(6) 8.31, 
(8) 2.22, 
(12) 
8.66 

(1) 1.16, 
(6) 2.13, 
(8) 5.38, 
(12) 4.37  
 

[59] 

Chitosan, glacial 
acetic 

HT/ 180˚C, 12 
h 

Mobile phase: 
MeOH and 

water 

12 fractions: 
 (1-12) ABS: 300; 
(1-12) EM: 400-415 

(1) 1.6, 
(3) 1.8, 
(6) 2.5, 
(10) 3.1  

N/A [60] 
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CA, EDA MW pyrolysis Mobile phase: 
MeOH 

10 fractions: 
(1-10) ABS: 240 
and 334-350; 
(1-10) EX: 310- 
400; 
(1-10) EM: 430-452 

1.2-3.4 (3) 10.03, 
(9) 14.98, 
(10) 
15.83, 
other <7.0 

[61] 

Thin-layer chromatography 

CA, EDA Oil bath, 

160˚C, 50 min 

Stationary 
phase: silica 
С18 gel plate; 
mobile phase:   

water: 
acetonitrile 
(7:3; v/w) 

Four fractions: 
(1) ABS: 262, 342; 
EM: 425-460; 
(2-4) ABS: 243, 
262; 
(2) EM: 465; 
(3) EM: 445; 
(4) EM: 425-500 

(1) 
4.2±1.6, 
(2) 
2.4±0.6, 
(3) 
3.2±0.6, 
(4) 
3.8±0.8  

(1) 4, 
(2) 55, 
(3) 3, 
(4) 12 

[62] 

Gel electrophoresis  

Carbon nanotubes Arc-discharge  1% agarose 
gel 

The mixture of 
green-blue, yellow, 
orange CNPs 

~ 1 1.6 [63] 

CA, EDA HT/ 200˚C, 
0.25, 0.5, 1, 3, 

5, 10 h 

0.2% agarose 
gel, 150V, 40 

min 

Nine bands: 
ABS: 350; 
EX: 350; 
EM: 450 

< 2  N/A [64] 

CA, EDA HT/ 200˚C, 3 
h 

2% agarose 
gel, 150V, 

300 mA for 
30 min 

Four bands: 
ABS: 242, 358; 
EX: 350; 
EM: 450 

N/A (1) 59±3, 
(2) 33±5, 
(3) 32±6, 
(4) 80±4  

[65] 

Candle soot Oxidation polyacrylamid
e gel 

Three classes of 
species: EM: 415-
615 
 

~ 1 (1) 0.008, 
(4) 0.019, 
(7) 0.008  

[8] 

Capillary electrophoresis  

CA, EDA MW 
pyrolysis/ 4 

min 

N/A Neutral, positively 
and negatively 
charged fractions 
ABS: 360 

N/A Positive 
and 
neutral 
have high 
QY, 
negative – 
low QY 

[66] 
 

 

*Table abbreviations list: 

 

ABS – maxima or a range of absorbance spectra  
CA – citric acid 

CNPs – carbon nanoparticles 
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EDA – ethylenediamine 
EM – maxima or a range of PL 
EX – maxima of excitation spectra 

HT – hydrothermal CNPs synthesis 
Lot – lotus leaves 

MW – microwave CNPs synthesis  
MWCO - molecular weight cut-off for dialysis bag  
N/A – no available data 

Ori – oriental plane leaves 
Pin – pine needles  

 

 

Table 2. Principles and feasibilities of CNPs separation techniques 

 Parameter of 

separation 

Separation 

technique 

CNPs 

properties 

correlation 

with separation 

parameters  

Separation 

type 

Equipment Extraction 

from the 

matrix  

Comment  

1 
Size 

 

Filtration 

N/A* 
 
 

primary 
separation 

filters/ 
membranes 

-** - 

Dialysis membrane bags - minor 
sample 
dilution 

Size-exclusion 
chromatography 

fine-
separation 

size-exclusion 
column 

- high 
sample 
dilution 

2 

 

Mass and/or 
density 

Centrifugation primary 
separation 

centrifuge - possibilit
y for pre-
concentra

tion 

Sucrose-density 
gradient 
centrifugation 

CNPs size 
decrease with 
increasing of 
gradient 
density 

fine-
separation 

 
 

ultracentrifuge +*** - 

3 
Charge to size 

ratio 

Gel and 
capillary 
electrophoresis 

Positive-
negative 
charge 
discrimination; 
compounds 
with higher 
charge/mass 
move faster  

electrophoresis 
system, gel 
layer/ bare 
fused-silica 

capillary 

+/- 
(for gel and 

capillary 

electrophore
sis 

respectively

) 

- 

4 Hydrophobicity 

Reversed phase 
liquid 
chromatography 
(column) 

The 
hydrophobic 
substances are 
absorbed by 
stationary 
phase, 
hydrophilic 
substances 
move  

silica gel C18  

- - 

Reversed phase 
liquid 
chromatography 
(thin-layer) 

+ - 
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5 Charge 

Anion-exchange 
chromatography 
(column) 

Positively 
charged 
substances 
move faster,  
negatively 
charged 
substances can 
be eluted by 
the changing 
of buffer pH 

chromatography 
system, anion-

exchange 
column 

- - 

 

* N/A – no available correlations or direct data comparison is impossible 

** - extraction from the matrix is not necessary 

*** + extraction from the matrix is necessary  
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Luminescent carbon nanoparticles separation and purification 

 

Commonly used centrifugation, dialysis or filtration techniques are necessary for removing 

large soot pieces or low molecular weight substances. 

An addition of techniques for fine separation (sucrose density centrifugation, gel 

electrophoresis, chromatography) is based on various CNPs properties, such as density, 

properties (charge, hydrophobicity) will allow not only to isolate CNPs fraction with uniform 

properties but charge, mass, size, hydrophobic or hydrophilic nature. 

In the case of sucrose gradient centrifugation method, the smaller size nanoparticles collected 

in a layer with a larger density compare to the larger ones, which is indicated by their 

penetration to the sucrose layers with larger density. 

The size-exclusion chromatography provides an effective tool for extracting fractions with 

different properties (optical and/or size) that is essential for consequent comparative analysis. 

The selection of gel electrophoresis experimental parameters such as buffer solution, pH, 

amperage, gel nature, and concentration allows effective sample separation. Furthermore, the 

possibility of a combination of gel electrophoresis and optical detections methods can provide 

detailed information about the nature and origin of light emission in CNPs. 
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